悟空视频

    在线播放云盘网盘BT下载影视图书

    深度学习: Caffe之经典模型详解与实战 - 图书

    2016
    导演:乐毅
    《深度学习——Caffe之经典模型详解与实战》首先介绍了深度学习相关的理论和主流的深度学习框架,然后从Caffe深度学习框架为切入点,介绍了Caffe的安装、配置、编译和接口等运行环境,剖析Caffe网络模型的构成要素和常用的层类型和Solver方法。通过LeNet网络模型的Mnist手写实例介绍其样本训练和识别过程,进一步详细解读了AlexNet、VGGNet、GoogLeNet、Siamese和SqueezeNet网络模型,并给出了这些模型基于Caffe的训练实战方法。然后,《深度学习——Caffe之经典模型详解与实战》解读了利用深度学习进行目标定位的经典网络模型:FCN、R-CNN、Fast-RCNN、Faster-RCNN和SSD,并进行目标定位Caffe实战。《深度学习——Caffe之经典模型详解与实战》的最后,从著名的Kaggle网站引入...(展开全部)
    深度学习: Caffe之经典模型详解与实战
    图书

    深度学习:21天实战Caffe - 图书

    2016计算机·计算机综合
    导演:赵永科
    本书是一本深度学习入门读物。以目前已经大量用于线上系统的深度学习框架Caffe为例,由浅入深,从Caffe的配置、部署、使用开始学习,通过阅读Caffe源码理解其精髓,加强对深度学习理论的理解,最终达到熟练运用Caffe解决实际问题的目的。和国外机器学习、深度学习大部头著作相比,本书偏重动手实践,将难以捉摸的枯燥理论用浅显易懂的形式表达,透过代码揭开其神秘面纱,更多地贴近实际应用。
    深度学习:21天实战Caffe
    搜索《深度学习:21天实战Caffe》
    图书

    深度学习详解 - 图书

    2024计算机·人工智能
    导演:王琦 杨毅远 江季
    本书根据李宏毅老师“机器学习”公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括 BERT 和 GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法. 在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节.
    深度学习详解
    搜索《深度学习详解》
    图书

    深度学习详解 - 图书

    2024计算机·人工智能
    导演:王琦 杨毅远 江季
    本书根据李宏毅老师“机器学习”公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括 BERT 和 GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法. 在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节.
    深度学习详解
    搜索《深度学习详解》
    图书

    深度学习实践:基于Caffe的解析 - 图书

    2021计算机·人工智能
    导演:薛云峰
    本书主要介绍Caffe的技术原理和一些高级使用技巧,首先介绍深度学习的趋势和业内动态。然后是关于Caffe的基础知识,介绍如何安装和武器库。在理解Caffe算法基础上,介绍Caffe的技术原理和特点,包括数学知识和设计知识。之后是Caffe各层使用的进阶,介绍每一层是什么,作用和实现及其使用的一般性原则和原理。最后是Caffe深度学习多任务网络,介绍多任务网络的现状,基本的网络配置,高级网络配置和网络解决方案的进阶。本书实践内容和现有系统进行无缝对接,并提供了各种调参技巧的黑魔法。
    深度学习实践:基于Caffe的解析
    搜索《深度学习实践:基于Caffe的解析》
    图书

    深度学习原理与PyTorch实战 - 图书

    2022计算机·编程设计
    导演:集智俱乐部
    本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。 第2版基于PyTorch 1.6.0,对全书代码进行了更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。
    深度学习原理与PyTorch实战
    搜索《深度学习原理与PyTorch实战》
    图书

    深度学习原理与PyTorch实战 - 图书

    2022计算机·编程设计
    导演:集智俱乐部
    本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。 第2版基于PyTorch 1.6.0,对全书代码进行了更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。
    深度学习原理与PyTorch实战
    搜索《深度学习原理与PyTorch实战》
    图书

    Python深度学习:模型、方法与实现 - 图书

    2021计算机·编程设计
    导演:伊凡·瓦西列夫
    本书集合了基于应用领域的高级深度学习的模型、方法和实现。本书分为四部分。第1部分介绍了深度学习的构建和神经网络背后的数学知识。第二部分讨论深度学习在计算机视觉领域的应用。第三部分阐述了自然语言和序列处理。讲解了使用神经网络提取复杂的单词向量表示。讨论了各种类型的循环网络,如长短期记忆网络和门控循环单元网络。第四部分介绍一些虽然还没有被广泛采用但有前途的深度学习技术,包括如何在自动驾驶上应用深度学习。学完本书,读者将掌握与深度学习相关的关键概念,学会如何使用TensorFlow和PyTorch实现相应的AI解决方案。
    Python深度学习:模型、方法与实现
    搜索《Python深度学习:模型、方法与实现》
    图书

    PyTorch深度学习实战 - 图书

    2022计算机·数据库
    导演:伊莱·史蒂文斯 卢卡·安蒂加 托马斯·菲曼
    虽然很多深度学习工具都使用Python,但PyTorch库是真正具备Python风格的。对于任何了解NumPy和scikit-learn等工具的人来说,上手PyTorch轻而易举。PyTorch在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。本书是教你使用PyTorch创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及将结果进行可视化展示。本书主要内容:(1)训练深层神经网络;(2)实现模块和损失函数;(3)使用PyTorchHub预先训练的模型;(4)探索在JupyterNotebooks中编写示例代码。
    PyTorch深度学习实战
    搜索《PyTorch深度学习实战》
    图书

    MXNet深度学习实战 - 图书

    2019计算机·人工智能
    导演:魏凯峰
    本书是从一名算法工程师的角度出发介绍算法实现,整体上偏基础和细节,能够帮助入门者少走弯路。随着这几年深度学习的快速发展,众多深度学习框架对各类接口的封装都很完善,使用起来非常方便,但是部分深度学习入门者仅仅停留在跑通demo却不理解细节内容的层面,这也常常被人调侃有些浮躁,通过本书,笔者希望读者不仅能够灵活调用这些接口实现算法,而且能够理解这些接口的内在含义,不断夯实自己的算法基础。
    MXNet深度学习实战
    搜索《MXNet深度学习实战》
    图书
    加载中...